Elevated ozone negatively affects photosynthesis of current-year leaves but not previous-year leaves in evergreen *Cyclobalanopsis glauca* seedlings

Weiwei Zhang\(^{a,b}\), Zhaozhong Feng\(^{b,*}\), Xiaoke Wang\(^{b,*}\), Junfeng Niu\(^{b}\)

\(^{a}\) Key Laboratory of Black Soil Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China

\(^{b}\) State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P. O. 2871, Shuangqing Road 18, Haidian District, Beijing 100085, China

**A R T I C L E  I N F O**

Article history:
Received 13 January 2013
Received in revised form 24 April 2013
Accepted 26 April 2013

Keywords:
Chlorophyll a fluorescence
Evergreen tree
Leaf position
Gas exchange
Ozone

**A B S T R A C T**

To assess the effects of leaf age/layer on the response of photosynthesis to chronic ozone (O\(_3\)), *Cyclobalanopsis glauca* seedlings, a dominant evergreen broadleaf tree species in sub-tropical regions, were exposed to either ambient air (AA) or elevated O\(_3\) (AA + 60 ppb O\(_3\), E-O\(_3\)) for two growing seasons in open-top chambers. Chlorophyll content, gas exchange and chlorophyll a fluorescence were investigated three times throughout the 2nd year of O\(_3\) exposure. Results indicated that E-O\(_3\) decreased photosynthetic parameters, particularly light-saturated photosynthesis rate, stomatal conductance and effective quantum yield of PSII photochemistry of current-year leaves but not previous-year leaves. Stomatal conductance of plants grown under ambient conditions partially contributed to the different response to E-O\(_3\) between leaf layers. Light radiation or other physiological and biochemical processes closely related to photosynthesis might play important roles. All suggested that leaf ages or layers should be considered when assessing O\(_3\) risk on evergreen woody species.

\(^*\) Corresponding authors.
E-mail addresses: zhzhfeng201@hotmail.com, fz2@rcees.ac.cn (Z. Feng), wangxk@rcees.ac.cn (X. Wang).

1. Introduction

Ground-level ozone (O\(_3\)) has received global concern due to its strong toxicity on agricultural crops, semi-natural vegetation and forest trees, and as a result of rising global background and regional peak O\(_3\) concentrations (e.g. Asia) (Feng and Kobayashi, 2009; The Royal Society, 2008). Numerous experimental studies have demonstrated the detrimental effects of O\(_3\) on tree species growth and physiological function, e.g. photosynthesis (Bagard et al., 2008; Feng et al., 2011; Schaub et al., 2005; Wittig et al., 2009; Zhang et al., 2010). The reduction in photosynthesis rate by O\(_3\) could be attributed to stomatal closure, decreased chlorophyll content and electron transport rate, impaired carboxylation capacity and Rubisco content (Paolletti et al., 2009; Reich, 1983). Although the reduction in Rubisco activity was assumed to be the primary cause in photosynthetic decline under O\(_3\) stress, stomata appeared to an important factor controlling O\(_3\) entering the leaf interior (Novak et al., 2005). Therefore, the response of stomatal conductance (g\(_s\)) to O\(_3\) at different leaf ages could influence the stomatal O\(_3\) uptake and further leaf tissue injury.

Previous studies have demonstrated that the effects of O\(_3\) on gas exchange are influenced by leaf age (Bohler et al., 2010; Coleman et al., 1995; Pääkkönen et al., 1996) and leaf position within canopy (Samuelson and Edwards, 1993; Schaub et al., 2005) when growing under the same conditions. For hybrid poplar and Aspen, elevated O\(_3\) concentrations altered the patterns of change in leaf area, photosynthetic rate and carbon gain with leaf position from root to apex and the older leaves were more sensitive to O\(_3\) than younger leaves (Bagard et al., 2008; Greitner et al., 1994). At the canopy level, ambient O\(_3\) concentrations caused reductions in both light-saturated photosynthesis rate (A\(_{sat}\)) and g\(_s\) of the lower canopy that were about 30% more than those of the upper canopy in black poplar (*Populus nigra* L) species (Novak et al., 2005). Young poplar trees also showed that reduced photosynthetic parameters related to chlorophyll content, maximum rate of photosynthetic electron transport and net photosynthetic assimilation appeared only on fully expanded leaves, but not on young and undeveloped leaves, which was partly attributed to differences in leaf anatomy between expanding and fully expanded leaves (Bagard et al., 2008). Similarly, for an evergreen broad-leaved species, *Castanopsis sieboldii*, elevated O\(_3\) significantly reduced the net photosynthetic rate...
of previous-year leaves but not that of expanding current-year leaves (Watanabe et al., 2008).

However, given the differences of leaf growth habit between deciduous and evergreen species, and lower gs in old (previous-years) leaves compared to young (current-year) leaves for evergreen species, it can be inferred that the response to O3 among leaf ages of evergreen species might be different from that of deciduous species. Therefore, it is necessary to further investigate the effects of O3 on the photosynthesis characteristics of evergreen species at different leaf ages/layers, which is critical for ozone risk assessment since most leaves of evergreen species are exposed to O3 for many years.

In this study, we selected Cyclobalanopsis glauca, an evergreen broadleaf tree species widely distributed in sub-tropical forests, to investigate the negative effects of elevated O3 on photosynthetic parameters, including chlorophyll content, gas exchange and photosynthetic electron transport at different leaf ages/positions. The objectives of this study are to determine whether impacts of O3 on photosynthesis depend on leaf age or leaf layer, and to explore possible mechanisms.

2. Materials and methods

2.1. Experimental site

The experimental site was located at the Tiantong National Field Observation and Research Station for Subtropical Forest Ecosystems (29°48’N, 121°47’E), Ningbo, Zhejiang Province, China. It is typical of the humid subtropical monsoon climate with cold dry winters and warm wet summers. The annual mean temperature is 16.2 °C and the warmest month is July with a mean temperature of 28.1 °C. Average annual precipitation is 1375 mm, concentrated between June and August.

2.2. Plant materials

One-year-old seedlings of Cyclobalanopsis glauca L. were individually planted into 6 L circular plastic pots in a temperature controlled and double glazed greenhouse (25 ± 2 °C, relative humidity 70–90%) from November 2008 until the middle of April 2009. Pots were filled with native yellowish brown lateritic soil (soil organic C 0.98%, total N 1.36 g kg⁻¹, total P 0.27 g kg⁻¹, total K 1.41%) in mixture with litter collected under forest in the ratio of 1:1 (v/v). Seedlings with similar height and basal diameter were selected for this study and pre-adapted to open-top chambers (OTCs) conditions for two weeks before O3 fumigation. During cultivation and O3 exposure, plants were well watered with tap water to avoid drought stress.

2.3. Ozone exposure

There were two treatments: ambient air (AA) and ambient air with the addition of 60 ppb O3 (E-O3), with two replicate chambers for each treatment. Four OTCs (octagonal base, 7 m² of growth space and 2.6 m in height) were randomly used as OTCs conditions for two weeks before O3 fumigation. During cultivation and O3 exposure, plants were well watered with tap water to avoid drought stress.

Gas exchange, leaf chlorophyll a fluorescence and total chlorophyll contents. Generally, C. glauca produces leaves in spring (April) and summer (July) during the growing season. We recorded the leaf number of the whole plant in monthly census, and marked current-year leaves on the main stem for six seedlings from each O3 treatment. The leaves that flushed in spring were fully expanded before the O3 fumigation started, and the number of these leaves averaged 47 and 49 in AA and E-O3, respectively. The leaves that flushed in summer developed to be fully expanded during the experimental. Leaf number gradually increased but the position of the leaf in the main shoot changed from upper to lower within the plant canopy during the course of the O3 fumigation. We conducted three measurements from July to September. Here, all measurements were performed between the sixth layers of leaves from the base at main shoot to apex since the lowest layer (1–5) at the base showed very low values of photosynthesis rate. The fully expanded leaf layer at the top of the canopy was Layer 17 at the first measurement (18th July) and Layer 21 at the second (17th August) and third (14th September) measurements. At the 3rd measurement, the number of leaves flushed in summer (including fully expanded) was 201 and 190 in AA and E-O3, respectively. All selected leaves were defined into three leaf ages, with the lowest and oldest leaves (from Layer 6 to Layer 11) as the mature leaves (M), the leaves formed in the last growing season (from Layer 13 to Layer 17) as young leaves formed in spring (YL) and the three uppermost leaves (from Layer 19 to Layer 21) were classified as newly formed leaves in summer (NFL).

2.4.1. Gas exchange and chlorophyll a fluorescence measurement

Three plants per chamber were randomly selected and two summer-flushed leaves, three spring-flushed leaves and three previous-year leaves of each plant were marked for measurements. Gas exchange was determined with a portable photosynthesis system (Li-6400, LI-COR Inc. Lincoln, NE, USA). The system controlled saturating PPFD (photosynthetic photon flux density) at 1200 μmol m⁻² s⁻¹. The black box was temperature to the ambient average of 32 °C, CO₂ at 380 μmol mol⁻¹, and relative humidity (RH) at 50–65%. All measurements were conducted from 09:00–11:00. During gas exchange measurements, chlorophyll a fluorescence parameters were also recorded. All gas exchange and fluorescence measurements were recorded when the stability or steady state indicated by total coefficient of variation was <3%. For chlorophyll fluorescence, steady state fluorescence yield (Fs) was recorded at saturating PPFD of 1200 μmol m⁻² s⁻¹. The intensity of the saturation pulses was 6000 μmol m⁻² s⁻¹ for 0.8 s, which was then used to calculate the maximum fluorescence yield by temporarily inhibiting photosystem II (PSII) photochemistry. Measurements of minimal fluorescence yield were carried out in the presence of far-red light (3 μmol m⁻² s⁻¹) in order to fully oxidize the PSII acceptor side. We determined Aq, gs, intercellular CO₂ concentration (Ci) and transpiration rate (T), foliar water use efficiency (WUE) was expressed as the ratio of Aq and T. The fluorescence parameters including actual photosynthetic efficiency of PSII in the saturated light (Fv/Fm), quenching of photochemical efficiency of PSII (qP) and effective quantum yield of PSII photochemistry (ΦPSII) were calculated as follows: Fv/Fm = (Fm – Fo)/Fm, qP = (Fm – F)/Fm, ΦPSII = (Fm – Fo)/Fm (Bradbury and Baker, 1984; Quick and Horton, 1984) and ΦPSII = (Fm – Fo)/Fm (Genty et al., 1989).

2.4.2. Total chlorophyll content measurement

Total chlorophyll content was not non-destructively measured on leaves used for gas exchange and fluorescence analysis with a SPAD chlorophyll meter (SPAD-520, Minolta, Japan). Three readings per leaf were averaged to give value.

2.5. Statistical analysis

As gas exchange parameters were not significantly different between chambers within O3 treatment, the values for each plant were used as an independent experimental unit throughout the statistics. The original data were checked for normality and homogeneity of variance, then subjected to analysis of variance with experimental unit throughout the statistics. The original data were checked for normality and homogeneity of variance, then subjected to analysis of variance with experimental unit throughout the statistics. The original data were checked for normality and homogeneity of variance, then subjected to analysis of variance with experimental unit throughout the statistics. The original data were checked for normality and homogeneity of variance, then subjected to analysis of variance with experimental unit throughout the statistics.
Across the three measurement campaigns, significant differences in total chlorophyll contents were detected in response to O₃, leaf age and measurement date, but not in interactions between O₃ and leaf age or O₃ and date (Fig. 1, Table 2). However, the impacts of E-O₃ on leaves with three ages differed at the different measurement dates, as indicated by the significant interaction between O₃ × age × date (P < 0.001, Table 2). As can been seen from Fig. 1, E-O₃ induced a larger reduction in chlorophyll content in the upper leaves (Layer 14 to Layer 20, NFL and YL) than in the lower canopy of plants (ML) at the 3rd measurement, whereas all leaf ages showed a similar response to E-O₃ at both the 1st and 2nd measurements.

Across all measurements, A_sat and gₛ were significantly affected by E-O₃, leaf age and their interactions, but not O₃ × age × date (Table 2), suggesting that the reduced A_sat and gₛ with E-O₃ differed between leaf ages throughout the measurements. Fig. 2 shows that E-O₃ significantly decreased A_sat only in NFL at the 2nd measurement, NFL and YL at the 3rd measurement, and gₛ only in YL and NFL leaves at the 2nd measurement. A_sat and gₛ in ML showed little response to E-O₃. Moreover, the leaves in lower part of canopy (ML) had a much lower A_sat and gₛ than the upper leaves (NFL and YL) (Fig. 2, Table 2). In contrast, E-O₃ did not significantly affect Cᵢ or WUE at any leaf age or layer throughout the course of the measurements (Table 2, Fig. 2).

For chlorophyll a fluorescence, Fᵥ/Fₘᵣ and qP were significantly reduced by E-O₃ across all measurements, but were not affected by the interaction of O₃ × age or O₃ × age × date (Fig. 3, Table 2). However, E-O₃ significantly reduced the Ψₚₛᵲ in both NFL and YL but not ML, as shown by the significant interaction of O₃ and age (Fig. 3, Table 2). For all three parameters, ML at any leaf layer did not show a significant response to E-O₃ at any measurement.

### Table 1

8-h mean O₃ concentration (M₈) and AOT₄₀ for ambient (AA) and elevated O₃ (E-O₃) treatments (8:00–16:00) during the 2009 and 2010 growing seasons.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>2009 (25th May–10th Sep.)</th>
<th>2010 (2nd May–13th Oct.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AA</td>
<td>E-O₃</td>
</tr>
<tr>
<td>Average of M₈ (ppb)</td>
<td>32.0</td>
<td>60.3</td>
</tr>
<tr>
<td>Maximum</td>
<td>97.6</td>
<td>159.7</td>
</tr>
<tr>
<td>Minimum</td>
<td>14.9</td>
<td>74.9</td>
</tr>
<tr>
<td>AOT₄₀ (ppm h)</td>
<td>5.8</td>
<td>34.5</td>
</tr>
</tbody>
</table>

### Table 2

Main and interactive effects of elevated O₃, leaf age and measurement date on leaf photosynthesis parameters of Cyclobalanopsis glauca seedlings in the 2010 growing season.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Main effects</th>
<th>Interactive effects</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>O₃</td>
<td>Age</td>
</tr>
<tr>
<td>A_sat</td>
<td>&lt;0.001</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>gₛ</td>
<td>&lt;0.001</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Cᵢ</td>
<td>0.65</td>
<td>0.07</td>
</tr>
<tr>
<td>WUE</td>
<td>0.94</td>
<td>0.008</td>
</tr>
<tr>
<td>Fᵥ/Fₘᵣ</td>
<td>&lt;0.001</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Ψₚₛᵲ</td>
<td>0.001</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>qP</td>
<td>0.052</td>
<td>&lt;0.001</td>
</tr>
<tr>
<td>Chl</td>
<td>&lt;0.001</td>
<td>&lt;0.001</td>
</tr>
</tbody>
</table>

### 4. Discussion

Elevated O₃ induced significant decreases in total chlorophyll content, net photosynthesis rate and gₛ across all leaf ages/layers of C. glauca (Table 2), in accordance with responses of other tree species, e.g., Cinnamomum camphora (Feng et al., 2011), Viburnum lantana (Calatayud et al., 2010), poplar (Bohler et al., 2010), aspen (Noormets et al., 2001) and beech (Bortier et al., 2008). Also, Fᵥ/Fₘᵣ and Ψₚₛᵲ but not qP were significantly reduced by E-O₃, suggesting that E-O₃ increased light energy dissipation of the antenna pigment, thus leading to a reduction in the efficiency of excitation energy captured by the open PSII reaction center, but no change on the proportion of open PSII reaction center. All these indicated that both dark and light reactions of photosynthesis of C. glauca were negatively affected by elevated O₃ after two years exposure (Figs. 2 and 3). On the basis of Farquhar and Sharkey (1982), the response of gas exchange parameters (reduced A_sat and gₛ, and no change of Cᵢ) to E-O₃ indicated that the decrease in net photosynthetic rate might not be fully explained by stomatal closure but by the decrease in the assimilation capacity. No difference in WUE between O₃ treatments was found for any measured leaves during the growing season (Fig. 2), suggesting that O₃ exposure may reduce photosynthetic decline in parallel with stomatal closure.

From Table 2, the lack of a significant interaction between O₃ and date indicated that the effects of E-O₃ on all tested parameters were fairly constant over time, i.e. the relative negative impacts of E-O₃ on photosynthesis did not change with leaves and canopy development. However, a significant interaction between O₃ and leaf age was found on A_sat, gₛ and Ψₚₛᵲ, suggesting that the negative effect of E-O₃ was strongly dependent on leaf age, as demonstrated by larger effects of E-O₃ on NFL and YL than ML (Figs. 2 and 3). A_sat
and photosynthetic efficiency ($\Phi_{PSII}$) was significantly reduced by E-O3 in both NFL and YL, and stomatal closure by E-O3 was only detected in YL leaves on the middle canopy. However, the results on the deciduous species indicated that E-O3 caused larger effects on old leaves of the lower canopy than young leaves of the upper canopy e.g. poplar, silver birch (Bortier et al., 2000; Mäenpää et al., 2011; Reich, 1983), and the developing leaves of silver birch ($\textit{Betula pendula}$ Roth.) were more tolerant to O3 than expanded leaves (Pääkkönen et al., 1996). Therefore, the response of evergreen tree species $\textit{C. glauca}$ to E-O3 at different leaf ages or leaf layers was a bit different from that of tested deciduous species, possibly attributable to the difference in leaf development traits between evergreen and deciduous species.

Although we did not measure O3 concentration along the vertical profile in this experiment, the OTC we used was the same design as that previously used in a rice experiment (Zheng et al., 2007). The O3 concentration at three heights of 50, 85 and 130 cm from the ground was 100, 103 and 106 ppb for the target 100 ppb O3, and the coefficient of variation was 1.01, 1.07 and 1.07, respectively, indicating that ozone concentration of both vertical and horizontal distribution was equable and stable in our OTCs (Zheng et al., 2007). This indicated that the upper and lower canopies were exposed to similar O3 concentration during the fumigation.

A significant linear relationship between the response of $A_{sat}$ to E-O3 and $g_s$ of ambient plants ($r^2 = 0.18$, $N = 22$, $P = 0.048$) suggested that $g_s$ partially contributed to the different response to O3 among leaf layers or leaves of different ages. Therefore, the observed larger photosynthetic response to E-O3 in YL can be explained by greater $g_s$ in the upper canopy relative to ML. Apparently, stomatal O3 uptake was much greater in the upper canopy (i.e. NFL and YL) than lower canopy (i.e. ML). However, it does not imply that cumulative O3 uptake at upper canopy was more than that at lower canopy because ML had been exposed to O3.
exposure for one year longer than NFL and YL. Moreover, termination of O₃ exposure may allow previous-year leaves to recover from O₃ damage and confer tolerance to subsequent O₃ exposure. Therefore, lower $A_{sat}$ and $g_s$ at ML may also be a result of adaptation or acclimation of plants to high [O₃]. The variation of $g_s$ from the apex along the vertical plant axis has been suggested to correspond with the degree of shading and age of the leaves (Herbinger et al., 2005; Kitao et al., 2006; Paoletti and Grulke, 2005). Possibly, other factors such as foliar detoxification capacity also play an important role in different responses to E-O₃ between leaves of different position or age. Fares et al. (2010) found that a changing defense against O₃ along the plant axis in Populus nigra was attributed to a vertical profile of foliar phenolic and volatile compounds. In accordance with their study, concentrations of antioxidants and secondary products were observed higher in sun leaves or upper canopy foliage of Fagus sylvatica L., including significantly increased glutathione concentrations under double O₃ concentration across both age classes and canopy levels (Herbinger et al., 2005; Kita et al., 2006; Paocetti and Gruilke, 2005).

5. Conclusions

From the present study, elevated O₃ decreased the photosynthetic parameters of current-year leaves but not previous-year leaves in evergreen C. glauca, suggesting that leaf age should be considered when assessing carbon assimilation loss of evergreen species exposed to long-term O₃. Stomatal conductance of plants at different leaf layers partially contributed to the different response to E-O₃ between leaf ages. However, information on other physiological and biochemical processes closely related to photosynthesis is needed to determine which factors are crucial to the differential responses to E-O₃ among leaves of different ages or layers.

Acknowledgments

This research was supported by the National Natural Science Foundation of China (No. 30700086) and Hundred Talent Program, Chinese Academy of Sciences. We gratefully acknowledge Dr. Xihua Wang, Ms. Fangfang Yao and Dr. Yuan Tian for supporting experimental site and ozone monitoring, respectively. We also express our appreciation to Dr. Felicity Hays for English improvement throughout the manuscript.

References

Bortier, K., De Temmerman, L., Ceulemans, R., 2000. Effects of ozone exposure in open-top chambers on poplar (Populus nigra) and beech (Fagus sylvatica): a comparison. Environmental Pollution 109, 509–516.


